Model Theory

Sheet 7

Deadline: 04.12.25, 2:30 pm.

Exercise 1 (6 points).

In the language $\mathcal{L} = \{<\} \cup \{c_n \mid n \in \mathbb{N}\}$ consisting of infinitely many constant symbols c_n together with a binary relation symbol <, consider the \mathcal{L} -theory T of dense linear orders without endpoints such that in every model \mathcal{A} the sequence $(c_n^{\mathcal{A}})_{n \in \mathbb{N}}$ is strictly increasing.

- a) Show that T is complete with quantifier elimination.
- b) Show that T has only three countable models up to isomorphism. These models can be chosen with universe \mathbb{Q} .

Hint: $\lim_{n\to\infty} c_n^{\mathcal{A}}$

Exercise 2 (8 points).

Let \mathcal{L} be the language consisting of infinitely many unary predicates $(P_i)_{i\in\mathbb{N}}$. Consider the class \mathcal{K} of all \mathcal{L} -structures \mathcal{A} such that for all finite disjoints subsets I and J of indices in \mathbb{N} there exists infinitely many a's in A which lie in every $P_i^{\mathcal{A}}$ for all i in I but do not lie in any $P_j^{\mathcal{A}}$ with j in J.

a) Give an axiomatization T of $\mathcal K$ and show that T is consistent.

Hint: Random graph.

- b) Show that T is complete with quantifier elimination.
- c) Describe (informally) all 1-types in $S_1(T)$.
- d) Is T totally transcendental? Does T have a prime model?

Exercise 3 (6 points).

Let \mathcal{A} be a countable model of an \aleph_0 -categorical theory T in a given countable language.

- a) Show that every partial elementary map $f: A_1 \to A_2$ between finite subsets of \mathcal{A} extends to an automorphism of \mathcal{A} .
- b) In particular, whenever two tuples \bar{a} and \bar{b} in \mathcal{A} realize the same type over a finite subset C, show that there is an automorphism of \mathcal{A} fixing C pointwise and mapping \bar{a} to \bar{b} .
- c) Let $1 \le n$ be in \mathbb{N} and consider a subset X of A^n which is invariant under all automorphisms of \mathcal{A} (i.e. every automorphism α only permutes the elements of X, but fixes X setwise). Show that X is definable without parameters.

Hint: Ryll-Nardzewski

The exercise sheets can be handed in in pairs. Submit them in the mailbox 3.19 in the basement of the Mathematical Institute.